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Fig. 3 
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METHOD AND SYSTEM FOR DETERMINING 
POSES OF OBJECTS 

FIELD OF THE INVENTION 

[0001] This invention relates generally to determining 
poses of obj ects, and more particular to determining the poses 
based on edges in images acquired either by a normal camera 
or a multi-?ash camera. 

BACKGROUND OF THE INVENTION 

[0002] Computer vision systems are used in a number of 
applications, such as automatic manufacturing using robots. 
Most robots can only operate in restricted and constrained 
environments. For example, parts in assembly lines have to be 
placed in a knoWn pose for robots to be able to grasp and 
manipulate the parts. As used herein, the pose of an object is 
de?ned as its 3D position and 3D orientation due to transla 
tions and rotations. 
[0003] Methods for determining the poses of objects using 
3D model to 2D image correspondences are Well knoWn. 
Unfortunately, those methods do not Work Well for objects 
With shiny or textureless surfaces. The situation is particularly 
severe When multiple identical objects are placed in a clut 
tered scene, for example, a bin Where multiple objects are 
piled on top of each other. 
[0004] Using chamfer matching, the contour of an object 
can be used to identify and determine the pose. HoWever, 
conventional methods fail When the imaged contour is par 
tially occluded, or located in a cluttered background. Edge 
orientation can be used to improve the chamfer matching in a 
cluttered background. The best computational complexity of 
existing chamfer matching algorithms is linear in the number 
of contour points. 
[0005] Active illumination patterns can greatly assist com 
puter vision methods by accurately extracting features in 
cluttered scenes. Examples of such methods include depth 
estimation by projecting a structured illumination pattern. 

SUMMARY OF THE INVENTION 

[0006] The embodiments of the invention provide a method 
and system for determining 2D or 3D poses of objects. 
[0007] During an o?line phase, the method models the 
object using a set of directional features of the object obtained 
from a model Which may be a computer aided design (CAD) 
model. Using a virtual camera and a rendering engine, a set of 
virtual images are generated for each possible pose of the 
object. The virtual images and the associated poses are stored 
in a database for later comparison during an online phase. 
[0008] During the online phase, sets of real images of a 
scene, including one or more of the objects in various arbi 
trary poses, are acquired by a real camera. This real camera 
can be a normal camera or a multi-?ash camera. For example, 

the scene includes a parts bin containing the objects. Then, in 
an example application, the objects can be picked from the bin 
by a robotic arm according to their poses for further assembly. 
It is understood, that the method can also be used for numer 
ous other computer vision applications in Which there is a 
need to match edges from acquired images to edges stored in 
the database. Examples of such applications include object 
detection and localiZation using edges. 
[0009] The images may be acquired either by a normal 
camera or a multi ?ash camera. If the images are acquired via 
a normal camera, then intensity edge detector like the Canny 
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edges are used. The detected Canny edges and their orienta 
tions are used to perform matching betWeen real and virtual 
images of the objects in different poses. For a multi-?ash 
camera, the scene is illuminated by point light sources 
arranged in a circle around a lens of the real camera, as Well 
as by ambient illumination. An image is acquired for each 
illumination. The cast shadoWs in the scene due to changing 
light sources encodes the information about the depth discon 
tinuities in the scene. The detected depth edges and their 
orientations are used to perform the matching betWeen the 
virtual and real images to determine the poses of the objects. 
[0010] The method is particularly useful for robotic appli 
cations Where multiple objects are placed in a bin, and each 
objects needs to picked from the bin one at the time. The 
method can be used With specular objects that are not richly 
textured and are immersed in cluttered scene. 
[0011] The method uses a novel cost function that respects 
both the position and the local orientation of each edge pixel. 
The cost function is signi?cantly superior to conventional 
chamfer cost functions and leads to accurate matching, even 
in heavily cluttered scenes Where conventional methods are 
unreliable. The invention provides a sub-linear time proce 
dure to compute the cost function using techniques from 3D 
distance transforms and integral images. 
[0012] We also provide a multi-vieW based pose-re?ne 
ment procedure to improve the estimated pose. We imple 
mented the procedure for an industrial robot arm and obtained 
location and angular estimation accuracy of the order of 1 mm 
and 20 respectively for a variety of parts With minimal texture. 
[0013] The cost function and the sub-linear time matching 
algorithm can also be used With a normal camera (Without 
additional light sources) setup for detecting and localiZing 
objects in images. The edges in the images can be detected 
using standard edge detection algorithms such as Canny edge 
detector. The input is a gallery of objects that Will be localiZed 
in images. The algorithm locates the objects in the scene by 
matching the edges of the gallery objects to the neW observed 
images. The object is detected if the matching cost is smaller 
than a user de?ned threshold for a given location. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0014] FIG. 1 is a schematic of a system for determining 
poses of objects according to embodiments of the invention; 
[0015] FIG. 2 is a How diagram of a method for determining 
poses of objects according to embodiments of the invention; 
[0016] FIG. 3 is a schematic of sample rotation angles on a 
2-sphere for rendering a CAD model of an object according to 
embodiments of the invention; 
[0017] FIGS. 4A and 4B are schematics of pixels modeled 
as line segments respectively; and 
[0018] FIG. 5 is a schematic of a three-dimensional dis 
tance transform and integral image representation to compute 
the matching costs according to embodiments of the inven 
tion. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

OvervieW 

[0019] As shoWn in FIGS. 1 and 2, the embodiments of our 
invention provide a system and method for determining poses 
of 3D objects. In one example application, a multi-?ash cam 
era (MFC) 110 is arranged on a robotic arm 120, see US. Pat. 
No. 7,206,449, “Detecting silhouette edges in images,” incor 
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porated herein by reference. The camera can acquires images 
of a scene 130 that includes multiple objects 140. The camera 
and the robotic arm can be connected to input/ output inter 
faces of a processor 140 that performs the step of the method 
150 for determining the poses. 
[0020] In another example, a normal camera is arranged on 
a robotic arm. The camera acquires images of a scene that 
include multiple objects. The camera and the robotic arm can 
be connected to input/output interfaces of a processor 140 that 
performs the step of the method 150 for determining the 
poses. 
[0021] In yet another example, a database of edges of 
objects that need to be detected in images is stored. When a 
test image is obtained, the edges in the test image are ?rst 
computed using a Canny edge detector. This edge image is 
then matched With the database of edges of objects using the 
method described here in order to detect and localiZe objects 
in images. 
[0022] BeloW We describe in detail the ?rst application, but 
it is assumed that the other examples are also covered. 
[0023] Of?ine Processing 
[0024] As shoWn in FIG. 2, during an of?ine preprocessing 
phase 210, virtual depth edge maps are rendered 211 for each 
possible pose of the objects in the scene using a computer 
aided design (CAD) model 212 to produce virtual pose tem 
plate images 213 in a database. 
[0025] Online Processing 
[0026] During online operation of the system, the MFC 
acquires 220 real sets of images of the scene using eight 
different ?ashes, as Well as an image When the scene is illu 
minated by ambient illumination. 
[0027] Depth edge maps are determined 230 from the 
images. The virtual pose templates images 213 are matched 
240 to the real edge maps using chamfer matching to deter 
mine a coarse pose. 

[0028] The coarse pose is iteratively re?ned 250 using 
online rendering 255. After the pose has been determined the 
robot arm 120 can execute 260 some action, for example to 
manipulate one of the objects 140. 
[0029] The MFC is an active illumination based camera 
that includes, e.g., eight, point light sources arranged around 
the lens. The MFC exploits the change in the shadoWs caused 
by changes in illumination source positions to provide depth 
edges, even for challenging objects such as textureless or 
specular objects. As the different LEDs around the camera 
?ash, the position of the shadoWs cast by the object changes. 
Pixels on the object that are in the shadoW of one of the ?ashes 
but not others change intensity signi?cantly. This change in 
intensity of the shadoW pixels can be used to detect and 
extract vieW dependent depth edges. 
[0030] Ratio Images 
[0031] First, We subtract the image acquired With just ambi 
ent illumination from the set of images acquired by the MFC 
images to obtain images Ii. A maximum intensity value at 
each pixel location among the images II. are located and used 
to construct a maximum illumination image Imax(x, y):maxl 
Ii(Xs y) 
[0032] Next, We compute ratio images as RIiIIi/IMM. Ide 
ally, the ratio value of a pixel in a shadoW region should be 
Zero because the contribution of the illumination from the 
ambient source has been removed. In contrast, the ratio values 
of pixels in non-shadoW regions should be close to one 
because these regions are illuminated by all the ?ashes. The 
point of transition betWeen the pixels in the shadoW region 
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and pixels not in the shadoW region is alWays a depth edge. to 
each ratio image, We apply a Sobel ?lter designed to detect 
this transition from shadoW to non-shadoW, i.e., 0 to l. 
[0033] Object Detection 
[0034] We noW describe our method for detecting and 
localiZing objects in cluttered scenes using depth edges 
acquired by the MFC in detail. Without loss of generality, We 
describe the method as applied to a single object. HoWever, 
this assumption is only for ease of this description. In reality, 
the method can locate and estimate the pose of multiple 
objects concurrently. Similarly, We describe the method as 
applied to depth edges acquired from MFC, but Without loss 
of generality the same method may also be applied to texture 
edges obtained from a traditional camera. 
[0035] Database Generation 
[0036] Given the CAD model 212 of the object, We gener 
ate 210 the database of depth edge templates 213 by simulat 
ing the MFC With softWare. In the simulation, a virtual cam 
era having the internal parameters of the real MFC is placed 
at an origin and With an optical axis aligned With the Z-axis of 
a World coordinate system. Eight virtual ?ashes are evenly 
placed on a circle on the x-y plane having center at the origin 
and a radius equal to the actual baseline betWeen the camera 
and LED illumination sources. 
[0037] The CAD model of the object is then placed on the 
Z-axis at a distance tZ from the virtual camera. The virtual 
?ashes are sWitched on one at a time, and eight renderings of 
the object, including cast shadoWs, are acquired. The depth 
edges in the scene are detected 211 as described above. 
[0038] As shoWn in FIG. 3, for the various poses, We uni 
formly sample rotation angles 6,C and By on a 2D surface of a 
sphere 301 embedded in a 3D space. The template database is 
generated by rendering the CAD model of the object With 
respect to the sampled rotations of the object 302. 
[0039] An arbitrary 3D rotation can be decomposed into a 
sequence of three elemental rotations about three orthogonal 
axes. We align the ?rst of these axes to be the camera optical 
axis and call the rotation about this axis as the in-plane rota 
tion 62. The other tWo axes are on a plane perpendicular to the 
camera optical axes, and the rotation about these tWo axes are 
called the out-of-plane rotation 6,C and By. The in-plane rota 
tion results in an in-plane rotation of the observed images, 
Whereas the effect of an out-of-plane rotation depends on the 
3D structure of the object. Due to this distinction, We only 
include out-of-plane rotations of the object in the database. 
We sample k out-of-plane rotations (6,C and By) 303 uniformly 
on the 2-sphere, S2 as shoWn in FIG. 3, generate the depth 
edge templates 213 for each of these rotations. 
[0040] Directional Chamfer Matching 
[0041] During the template matching 240, We search for the 
database together With an optimal 2D Euclidean transforma 
tion, SeSE(2), Which aligns the depth edges of the virtual 
templates 213 to the depth edges obtained from the real MFC 
images. A 2D Euclidean transformation is represented With 

three parameters, s:(6Z, tx, ty, Where tx, and ty are the image 
plane translations along x and y axis respectively and 62 is the 
in-plane rotation angle. 
[0042] The rotation applied to an image pixel is 
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[0043] Chamfer matching is a technique to ?nd a best align 
ment betWeen tWo edge maps. Let U:{ul-} and V:{vj} be the 
sets of virtual and real image edge maps, respectively. The 
chamfer distance betWeen U andV is given by the average of 
distances betWeen each pixel ul- and its nearest edge pixel inV 
as 

. 2) 
dcMW, V) = — |I4i — Vj| 

uieU 

Where 

n : |U|. 

[0044] The best alignment parameter seSE(2) betWeen the 
tWo edge maps is then given by 

§=argS€rrS1Eir12)dCM(W(U;s), v). (3) 

[0045] Chamfer matching becomes less reliable in the pres 
ence of background clutter. To improve accuracy, the chamfer 
matching can incorporate edge orientation information into 
the matching cost. The virtual and real image edges are quan 
tized into discrete orientation channels and individual match 
ing scores across channels are summed. 

[0046] Although this alleviates the problem of cluttered 
scenes, the cost function is still very sensitive to the number of 
orientation channels and becomes discontinuous at channel 
boundaries. The chamfer distance can be augmented With an 
additional cost for orientation mismatch, Which is given by 
the average difference in orientations betWeen virtual edges 
and their nearest edge pixels in the real image. 
[0047] Instead of an explicit formulation of orientation 
mismatch, We generalize the chamfer distance to pixels in ER 3 
for matching directional edge pixels. Each edge pixel x is 
augmented With a direction term ([)(X), and the directional 
chamfer matching (DCM) score is noW 

[0048] Where 7» is a Weighting factor. 
[0049] The directions ([)(X) are computed modulo at, and the 
orientation error gives the minimum circular difference 
betWeen the tWo directions 

min {WOO-(P062)l,ll¢(x1)—¢(x2)l—?l}- (5) 

[0050] The nearest pixel in V is initially located for a given 
virtual pixel u, and the cost function is augmented With the 
difference betWeen their orientations. Therefore, our cost 
function jointly minimizes a sum of location and orientation 
error terms. 

[0051] It can be easily veri?ed that our matching_co_st is a 

pieceWise smooth function of both the translation tx, ty, the 
rotation 62 of the virtual template edges. Therefore, our 
matching is more accurate in a cluttered scene With missing 
edges and small misalignments, than the prior art matching. 
[0052] To our best knowledge, the computational complex 
ity for the conventional chamfer matching procedure is linear 
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in the number of virtual template edge pixels, even Without 
the directional term. As an advantage, We provide a sub-linear 
time procedure for exact computation of the 3D chamfer 
matching scores. 
[0053] Search Optimization 
[0054] The search in Eqn. 3 requires optimization over 
three parameters of planer Euclidean transformation (62, tx, 
ty) for each of the k templates stored in the database. If We 
have a 640x480 real image and a database of k:300 edge 
templates, then a brute-force search requires more than 1010 
evaluations of the cost function in Eqn. (4). 
[0055] Therefore, We perform search optimization in tWo 
stages: 
We use a sublinear time procedure for computing the match 
ing score; and 
We reduce the three-dimensional search problem to one 
dimensional queries by aligning major lines of virtual images 
and the real images. 
[0056] Linear Representation 
[0057] The edge map of the scene does not folloW an 
unstructured binary pattern. Instead, the object contours com 
ply With certain continuity constraints, Which can be retained 
by concatenating line segments of various lengths, orienta 
tions and translations. We represent pixels in an edge image, 
see FIG. 4A, as a collection of m-line segments, see FIG. 4B. 
Compared With a set of pixels Which has cardinality n, this 
linear representation is more concise. It requires only O(m) 
memory to store an edge map Where m<<n. 
[0058] We use a variant of a RANSAC (RANdom SAmple 
Consensus) procedure to compute the linear representation of 
the edge map. The procedure initially hypothesizes a variety 
of lines by selecting a small subset of pixels and their direc 
tions. The support of a line is given by the set of pixels Which 
satisfy the line equation Within a small residual, and form a 
continuous structure. 
[0059] The line segment With the largest support is retained 
and the procedure is iterated With the reduced set until the 
support becomes smaller than a feW pixels. The procedure 
only retains pixels With certain structure and support, there 
fore noise is ?ltered. In addition, the directions recovered 
through line ?tting procedure are more precise compared 
With local operators such as image gradients. Any appropriate 
line ?tting technique can also be used instead of the RANSAC 
based method described above. 
[0060] FIG. 4A shoWs a set of 11542 pixels that are mod 
eled With 300 line segments as shoWn in FIG. 4B. 
[0061] Three-Dimensional Distance Transform 
[0062] The matching score given in Eqn. (4) requires ?nd 
ing the minimum cost match over location and orientation 
terms for each virtual template edge pixel. Therefore, the 
computational complexity of the brute force procedure is 
quadratic in the number of template and real image edge 
pixels. 
[0063] As shoWn in summary form in FIG. 5, We provide a 
three-dimensional distance transform representation (DT3) 
to compute the matching cost in linear time. This representa 
tion is a three dimensional image tensor Where the ?rst tWo 
dimensions are the locations on the image plane and the third 
dimension is the quantized edge orientations. 
[0064] We use the edge orientation as a third dimension. 
The edge orientations 510 are quantized into N discrete val 
ues 520, the x-axis, the y-axis, and the edge orientation (I). 
This, together With the tWo-dimensional pixel coordinates, 
form a set of 3D grid pixels 530. The quantization loses some 
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precision in the edge orientation. However, it is not severe 
because the pose matching part serves only as a mean to get an 
initial coarse pose estimate. The exact orientations of the line 
segments are used during pose re?nement. 

[0065] In detail. the edge orientations are evenly quantized 
into q discrete orientation channels (l>:{(])i} in a range [75). 
Each element of the tensor encodes the minimum distance to 
an edge pixel in joint location and orientation space as 

[0066] Where ([)(x) is the nearest quantization level in 
orientation space to ([)(X) in (I). 

[0067] The DT3 tensor can be computed in O(q) passes 
over the image. Eqn. (6) can be reWritten as 

1 

[0068] Where DTVNE} 
is the tWo dimensional distance transform of the edge pixels 
inV having orientation 0,. Initially, We compute q tWo dimen 
sional distance transforms using a conventional procedure 
540. Subsequently, the DT3Vtensor in Eqn. (7) is computed 
by solving a second dynamic program over the orientation 
costs, for each location separately 550. 
[0069] Using the 3D distance transform representation 
DT3V, the directional chamfer matching score of any tem 
plate U can be computed as 

l A 8 
dmw. v) = Z 2 0mm. mm- ( ) 

uieU 

[0070] 
[0071] Let L U:{l[sj, ej] } j: 1 _ _ _ m be the linear representation 
of template edge pixels U Where sj and ej are the start and end 
locations of the jth line, respectively. For ease of notation, We 
sometimes refer to a line only by its index We assume that 
the line segments only have directions among the q discrete 
channels (I), Which is enforced While computing the linear 
representation. All the pixels on a line segment are associated 
With the same orientation Which is the direction of the line 

Hence, the directional chamfer matching score becomes 

Distance Transform lntegral 

1 A 9 

dmw. v>= Z Z Z mam-Wm- ( ) 
ljeLU well 

[0072] In this formulation, the ith orientation channel of the 
DT3 Vtensor is only evaluated for summing over the pixels of 
line segments having direction (j),- 560. 
[0073] lntegral images are intermediate image representa 
tions used for fast calculation of region sums of pixels, see 
US. Pat. No. 7,454,058, “Method of extracting and searching 
integral histograms of data samples,” incorporated herein by 
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reference. We provide a tensor of integral distance transform 
representation (IDT3 V) to evaluate the summation of costs 
over any line segment in O( l) operations. For each orientation 
channel i, We compute the one-directional integration along (j), 
560. 

[0074] Let xO be the intersection of an image boundary With 
the line passing through x and having direction (01-. Each entry 
of the IDT3 Vtensor is given by 

IDT3V(x, at.) = Z DT3V(xj-, qli). (10) 
xjellxoyx] 

[0075] The IDT3V tensor can be determined in one pass 
over the DT3V tensor. Using this representation, the direc 
tional chamfer matching score of any template U can be 
computed in O(m) operations via 

[0076] Because m<<n, the computational complexity of 
the matching is sub-linear in the number of template pixels n. 

[0077] The O(m) complexity is an upper bound on the 
number of computations. For pose estimation, We Would like 
to retain only the best hypothesis. We order the template lines 
With respect to their support and start the summation from the 
lines With the largest support. The hypothesis is eliminated 
during the summation if the co st is larger than the current best 
hypothesis. The supports of the line segments shoW exponen 
tial decay, therefore for majority of the hypothesis only a feW 
arithmetic operations are performed. 

[0078] 
[0079] The search for the optimal pose over three param 
eters of planer Euclidean transformation is computationally 
intensive to be practical for real-time applications. The linear 
representation provides an ef?cient method to reduce the siZe 
of the search space. The observation is that, the template and 
real image line segments are near perfectly aligned With the 
true estimate of the template pose. In addition, the major lines 
of the template and real images are very reliably detected 
during the line-?tting because the procedure favors segments 
With larger support. 
[0080] We order template and real line segments based on 
their support and retain only a feW major lines to guide the 
search. The template is initially rotated and translated such 
that the template virtual line segment is aligned With the 
direction of the real image line segment and its end pixel 
matches the start pixel of the real segment. 
[0081] The template is then translated along the real seg 
ment direction and the cost function is evaluated only at 
locations Where there is an overlap betWeen the tWo line 
segments. This procedure reduces the three-dimensional 
search to one-dimensional searches along only a feW direc 
tions. The search time is invariant to the siZe of the image and 
is only a function of number of virtual and real image lines, 
and their lengths. 

One-Dimensional Search 
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[0082] Pose Re?nement 
[0083] We have to clearly state that pose re?nement is an 
optional step and is not applicable to applications other than 
pose estimation. For the computer vision application that We 
described above, there is no pose re?nement step. 

[0084] The minimum cost template together With its in 

plane transformation parameters (62, tx, ty) provide a coarse 
estimate of the 3D pose of the object. Let 6x, 6y be the out 
of-plane rotation angles and t2 be the distance from the cam 
era, Which are used to render the virtual image. We back 
project the in-plane translation parameters to 3D using a 
camera calibration matrix K, and the initial 3D pose of the 
object, p0, is given by the three Euler angles (6x, By, 62) and a 
3D translation vector (tx, ty, tZ)T. 
[0085] The 3D pose p can also be Written in matrix form as 

R l‘ (12) Mp=[ Op f]eSE(3), 
[0086] Where RF is the 3x3 orthogonal matrix computed 
by a sequence of three rotations around x-y-Z axes RGZR 
eyRex, and tp is the three-dimensional translation vector. 

[0087] The precision of the initial pose estimation is limited 
by the discrete set of out-of-plane rotations included into the 
database. We describe a continuous optimization method to 
re?ne the pose estimation. The proposed method is a combi 
nation of iterative closest point (ICP) and Gauss-Newton 
optimiZation. 
[0088] Three-dimensional pose estimation from a single 
vieW is an ill-posed problem. To minimiZe the uncertainty in 
pose estimation, We use a tWo vieW approach, Where the robot 
arm is moved to a second location and the scene is reimaged 
With the MFC. The edge pixels detected in the tWo vieWs are 
given by the tWo sets 

[0089] Let MU)eSE(3),je{l,2} be the 3D rigid motion 
matrices determining the location of the tWo cameras in World 
coordinate system, and P:(K 0) be the 3x4 projection matrix. 
The optimiZation procedure minimiZes the sum of squared 
projection error betWeen the detected edge pixels Vmi, and 
the corresponding 3D pixels ?g),- in the 3D CAD model, 
simultaneously in both vieWs 

[0090] The projection of 3D pixels um,- are expressed in 
homogeneous coordinates and in this formulation We assume 
that they have been converted to 2D coordinates. We ?nd the 
3D-2D pixel correspondences via closest pixel assignment on 
the image plane. We simulate the tWo camera setup, and 
render the 3D CAD model With respect to the current pose 
estimate p. Let UU):{uU)i}, je{l,2} be the sets of detected 
edge pixels in tWo synthetic vieWs and UU):{uU)l-} be the 
corresponding pixel sets in the 3D CAD model. For each pixel 
in U0), We search for the nearest pixel in V0) With respect to 
the directional matching score 
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and establish the pixel correspondences (13(7),, vwi). 
[0091] The non-linear least squares error function given in 
Eqn. (13) is minimiZed using the Gauss-Newton procedure. 
Starting With the initial pose estimate p0, We improve the 
estimation via the iterations pt+l:pt+Ap. The update vector 
Ap is given by the solution of the normal equations (1T8 
J e)Ap:J T 86, Where e is the N dimensional vector of each of the 
summed error terms in Eqn. (13), and 18 is the N><6 Jacobian 
matrix of 6 With respect to p, evaluated at p’. 
[0092] The correspondence and minimiZation problems are 
solved repeatedly until convergence. The initial pose estimate 
given by the matching procedure is usually close to the true 
solution, therefore in general 5 to 10 iterations suf?ce for 
convergence. 

Effect of the Invention 

[0093] The invention provides a method and system for 
object detection, localiZation and pose estimation using a 
normal camera and intensity edges or a multi-?ash camera 
(MFC) and depth edges. We reformulate the problem as one 
of ?nding matches betWeen the intensity/ depth edges 
obtained in one or more normal/MFC images to the rendered 
intensity/depth edges that are computed of?ine using a 3D 
CAD model of the objects. 
[0094] We introduced a novel cost function that is signi? 
cantly superior to the conventional chamfer cost, and devel 
oped a sub-linear time multi-vieW based pose estimation and 
re?nement procedures. 
[0095] Although the invention has been described by Way 
of examples of preferred embodiments, it is to be understood 
that various other adaptations and modi?cations may be made 
Within the spirit and scope of the invention. Therefore, it is the 
object of the appended claims to cover all such variations and 
modi?cations as come Within the true spirit and scope of the 
invention. 

We claim: 
1. A method for determining a pose of an object in a scene, 

comprising a processor for performing steps of the method, 
comprising the steps of: 

rendering sets of virtual images of a model of the object 
using a virtual camera, Wherein each set of virtual 
images is for a different knoWn pose the model, and 
Wherein the model is illuminated by a set of virtual light 
sources, and Wherein there is one virtual image for each 
virtual light source in a particular set for a particular 
knoW pose; 

constructing virtual depth edge map from each virtual 
image; 

storing each set of depth edge maps in a database and 
associating each set of depth edge maps With the corre 
sponding knoWn pose; 

acquiring a set of real images of the object in the scene With 
a real camera, Wherein the object has an unknown pose, 
and Wherein the object is illuminated by a set of real light 
sources, and Wherein there is one real image for each real 
light source; 
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constructing real depth edge map for each real image; and 
matching the real depth edge maps With the virtual depth 

edge maps of each set of virtual images using a cost 
function to determine the known pose that best matches 
the unknown pose, Wherein the matching is based on 
locations and orientations of pixels in the depth edge 
maps. 

2. The method of claim 1, Where the real camera and the 
virtual camera are conventional, and the edges of the real and 
virtual images are used for pose estimation. 

3. The method of claim 2, Wherein the method is used for 
object detection and localiZation in an image from a database 
of stored query edge templates for various objects. 

4. The method of claim 1, Wherein the camera is arranged 
on a robot arm for manipulating the object. 

5. The method of claim 1, Wherein the model is a computer 
aided design model. 

6. The method of claim 1, Wherein the model is a set of 
edges for possible poses of the object. 

7. The method of claim 1 Where multiple models for dif 
ferent objects are stored simultaneously. 

8. The method of claim 1, further comprising; 
acquiring an ambient image of the scene using ambient 

light; 
subtracting the ambient image from each real image. 
9. The method of claim 1, Wherein the matching uses 

directional chamfer matching to determine a coarse pose; and 
an optional procedure for re?ning the coarse pose. 

10. The method of claim 1, further comprising: 
dividing each real image by a maximum intensity image to 

determine a ratio image, and Wherein the matching is 
based on the ratio images. 

11. The method of claim 1, further comprising: 
quantiZing each virtual image and each real image into 

discrete orientation channels, and Wherein the co st func 
tion sums matching scores across the orientation chan 
nels. 

12. The method of claim 2, Wherein the edges from the real 
and virtual images are partitioned into discrete orientation 
channels, and Wherein the cost function sums matching 
scores across the orientation channels. 
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13. The method of claim 12, Wherein the cost function is 

Wherein U:{ui} are virtual pixels in the virtual edge maps, 
V:{vj} are real pixels in the real image edge maps, 4) is an 
orientation of each pixel, 7» is a Weighting factor, and n:|U|. 

14. The method of claim 13, Wherein the directions 4) are 
computed modulo at, and an orientation error gives a mini 
mum circular difference betWeen the tWo directions. 

15. The method of claim 1, further comprising: 
representing pixels in the virtual image and the real images 

by line segments; and 
aligning the lines segments of the virtual images and the 

real images. 
16. The method of claim 1, further comprising: 
representing pixels in the virtual image and the real images 

by line segments; and 
aligning the lines segments of the virtual images and the 

real images. 
17. The method of claim 13 or 16, Wherein the cost function 

for a given location is computed in sub-linear time in the 
number of edge points using 3D distance transforms and 
directional integral images. 

18. The method of claim 1, Wherein the edges can be 
computed using a conventional camera and Canny edge 
detection. 

19. The method of claim 1, Wherein a gallery of hand draWn 
or exemplar objects are detected and localiZed in images 
using the cost function and fast matching algorithm. 

20. The method of claim 19, Wherein poses of rigid or 
deformable objects are estimated using a gallery of exemplar 
images or shapes. 

21. The method of claim 1 as applied to human body pose 
estimation. 

22. The method of claim 1 as applied to object detection 
and localiZation in images. 

* * * * * 


